$V = 1975.63 (12) \text{ Å}^3$ 

 $0.40 \times 0.23 \times 0.17 \text{ mm}$ 

2220 independent reflections

2113 reflections with  $I > 2\sigma(I)$ 

Mo  $K\alpha$  radiation

 $\mu = 0.09 \text{ mm}^{-1}$ 

T = 170 (2) K

 $R_{\rm int} = 0.032$ 

Z = 8

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 2,6-Dimethyl-9-oxabicyclo[3.3.1]nonane-e*ndo*-2,e*ndo*-6-diol

# M. López-Rodríguez<sup>a</sup> and C. Foces-Foces<sup>b</sup>\*

<sup>a</sup>Instituto de Bioorgánica, Universidad de La Laguna-CSIC, Avenida Astrofísico Fco. Sánchez, 2, E-38206 La Laguna, Tenerife, Spain, and <sup>b</sup>Instituto Rocasolano, CSIC, Departamento de Cristalografía, Serrano 119, E-28006 Madrid, Spain Correspondence e-mail: cfoces@iqfr.csic.es

Received 1 June 2007; accepted 2 July 2007

Key indicators: single-crystal X-ray study; T = 170 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.122; data-to-parameter ratio = 18.3.

The structure of the title compound, C<sub>10</sub>H<sub>18</sub>O<sub>3</sub>, can be described in the space group Cc with two independent molecules in the asymmetric unit almost related by a twofold axis due to the different orientations of the H atoms of the hydroxyl groups. However, in the space group C2/c this pseudo-twofold axis is a crystallographic one and these H atoms appear to be disordered. The same situation (Cambridge Structural Database, CSD) has been observed in the structure of the carbobicyclic derivative (CSD refcode SEWXAT), described in the space group Pc with two independent molecules, while in the thiobicyclic analogue (SEWXEX), the H atoms are disordered in the space group  $P2_1/c$ . In these three compounds, the hydroxyl groups are in equatorial positions and anti with respect to the ether atom bridge. The supramolecular structure of the title compound consists of layers where the hydroxyl groups are involved as donor and acceptor of hydrogen bonds [graph-set motif  $R_4^4(8)$ ]. This layered structure shows a close resemblance to those of the carbo- and thiobicyclic analogues but is dissimilar to that of the exo diastereoisomer derivative, which has OH groups in a syn disposition with respect to the ether bridge (WASWAO).

# **Related literature**

For the related structures [Cambridge Structural Database (CSD), Version 5.28; Allen, 2002] of the *endo-2,endo-6*-dihydroxy-2,6-dimethylbicyclo[3.3.1]nonane (CSD refcode SEWXAT) and *endo-2,endo-6*-dihydroxy-2,6-thiobicyclo-[3.3.1]nonane (CSD refcode SEWXEX) analogues, see: Hawkins *et al.* (1990). For the *exo* diastereoisomer (CSD refcode WASWAO) of the title compound, see: Pich *et al.* (1993). For *syn*-diol derivatives with inclusion behaviour, see: Kim *et al.* (2002).

For related literature, see: Bernstein *et al.* (1995); Carrasco (2001).



# Experimental

#### Crystal data

 $C_{10}H_{18}O_3$   $M_r = 186.24$ Monoclinic, C2/c a = 10.8900 (2) Å b = 9.9227 (2) Å c = 18.8981 (3) Å  $\beta = 104.658$  (11)°

#### Data collection

Nonius KappaCCD area-detector diffractometer Absorption correction: none 11200 measured reflections

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.045$ | 121 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.122$               | H-atom parameters constrained                              |
| S = 1.08                        | $\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 2220 reflections                | $\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$ |

# Table 1

Selected torsion angles (°).

| 01-C1-C2-O2  | -175.6(1) | C1-C2-O2-H2  | 79   |
|--------------|-----------|--------------|------|
| O1-C1-C2-C9  | 67.3 (1)  | C1-C2-O2-H12 | -39  |
| 01-C5-C6-O3  | -173.1(1) | C5-C6-O3-H3  | -56  |
| O1-C5-C6-C10 | 68.4 (1)  | C5-C6-O3-H13 | -162 |

#### Table 2

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                       | $D-\mathrm{H}$   | $H \cdots A$                               | $D \cdots A$                                      | $D - \mathbf{H} \cdots A$               |
|--------------------------------------------------------|------------------|--------------------------------------------|---------------------------------------------------|-----------------------------------------|
| $O2-H2\cdots O2^i$                                     | 0.84             | 1.92                                       | 2.728 (2)                                         | 160                                     |
| $O2-H12 \cdot \cdot \cdot O3^{ii}$                     | 0.84             | 1.96                                       | 2.687 (1)                                         | 145                                     |
| O3−H3···O2 <sup>iii</sup>                              | 0.84             | 2.04                                       | 2.687 (1)                                         | 133                                     |
| $O3-H13\cdots O3^{iv}$                                 | 0.84             | 2.02                                       | 2.738 (2)                                         | 143                                     |
| Symmetry codes: (1)<br>$-x + 1, y, -z + \frac{1}{2}$ . | i) $-x, y, -z +$ | $\frac{1}{2}$ ; (ii) $x - \frac{1}{2}$ , y | $y - \frac{1}{2}, z;$ (iii) $x + \frac{1}{2}, z;$ | $\frac{1}{2}, y + \frac{1}{2}, z;$ (iv) |

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK* and *DENZO* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *WinGX* (Farrugia, 1999), *PLATON* (Spek, 2003) and *Mercury* (Macrae *et al.*, 2006).

The authors thank the DGICYT of Spain (project No. CTQ2004–01674/BQU) for financial support and Professor

J. D. Martin (Instituto Investigaciones Qímicas, CSIC, Sevilla, Spain) for suggesting this study and providing the sample.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YM2059).

#### References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Carrasco, H. (2001). PhD Thesis. University of Sevilla-CSIC, Spain.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Hawkins, S. C., Scudder, M. L., Craig, D. C., Rae, A. D., Raof, R. B. A., Bishop, R. & Dance, I. G. (1990). J. Chem. Soc. Perkin Trans. 2, pp. 855–870.
- Kim, S., Bishop, R., Craig, D. C., Dance, I. G. & Scudder, M. L. (2002). J. Org. Chem. 67, 3221–3230.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453– 457.
- Nonius (2000). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pich, K. C., Bishop, R., Craig, D. C., Dance, I. G., Rae, A. D. & Scudder, M. L. (1993). *Struct. Chem.* **4**, 41–51.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

supplementary materials

Acta Cryst. (2007). E63, o3537-o3538 [doi:10.1107/S1600536807032163]

# 2,6-Dimethyl-9-oxabicyclo[3.3.1]nonane-endo-2,endo-6-diol

## M. López-Rodríguez and C. Foces-Foces

#### Comment

In a project related with the synthesis of a universal template for resolution of racemic mixtures of secondary alcohols, the intermediate title compound was synthesized (Carrasco, 2001). On the other hand, the analogous *syn*-diols derivatives studied so far have proved to have inclusion behaviour (Kim *et al.*, 2002).

The two independent molecules of (I) in the *Cc* space group differ from each other only in the orientation of the H atoms of the hydroxyl groups. The molecules are almost related by a twofold axis which is a crystallographic one in the C2/c space group and, therefore, the H atoms are split into two positions (Figure 1). The same situation has been observed (Cambridge Crystallographic Database, Allen, 2002) in the structure of the *endo-2,endo*-6-dihydroxy-2,6-dimethylbicyclo(3.3.1)nonane compound described in the *Pc* group (SEWXAT refcode: Hawkins *et al.*, 1990) with a CH<sub>2</sub> group instead of the ether bridge while in the thio-bicycle derivative (SEWXEX refcode,  $P2_1/c$  space group: Hawkins *et al.*, 1990) the H of the hydroxyl groups appear to be disordered.

The six-membered rings are in a slightly distorted chair conformation with the hydroxyl groups in equatorial position, *anti* with respect to the ether atom O1 (Table 1). These OH groups are involved in the formation of the  $R_4^4$ (8) hydrogen bonding motif (Bernstein *et al.*, 1995) acting as both donor and acceptor of hydrogen bonds that results into sheets (Table 2, Figure 2 and 3). Weak C—H···O<sub>ether</sub> contacts link the layers into a three-dimensional network (2.65, 3.613 (1)Å and 162° for the H···A, D···A distances and DH···A angle). This layered structure is similar to that of carbo-bicycle and thio-biclycle analogues (SEWXAT and SEWXEX) but dissimilar to that of the *exo* diastereoisomer derivative (OH groups in *syn* disposition with respect to the ether bridge (WASWAO, Pich *et al.*, 1993). These results are in agreement with the rules proposed by Kim *et al.*, (2002) to be fulfilled by the molecular structure of these derivatives to form supramolecular tubulant hydrogen-bonding networks.

#### Experimental

Compound (I) was synthesized (Carrasco, 2001) within a project related with the synthesis of a universal template for resolution of racemic mixtures of secondary alcohols and was crystallized from a mixture of acetone/n-hexane at 50%. No structural phase transition was detected when cooling the sample from room temperature to 170 K.

#### Refinement

Refinements were performed in the Cc and C2/c space groups. In the C2/c group, the H atom of the hydroxyl groups were split into two positions while in the Cc space group refinements were carried out with two independent molecules without disorder. The lack of suitable anomalous scatters did not allow us to reliably determine the absolute structure according to the Flack parameters = 0.3 (14) and, therefore, the Friedel pairs were merged. All hydrogen atoms were located on difference

Fourier maps and they were included in the refinement in the riding-model approximation with C—H = 0.98 (CH<sub>3</sub>), 0.99 (CH<sub>2</sub>), 1.00 (CH) and O—H = 0.84 Å with  $U_{iso}(H) = 1.2U_{eq}(C,O)$ .

### **Figures**



Fig. 1. Asymmetric unit showing displacement ellipsoids at the 30% probability level. Dashed lines represented the disordered H atoms.



Fig. 2. Two-dimensional network showing the  $R_4^4(8)$  and  $R_4^4(36)$  rings. Hydrogen atoms not involved in the O—H···O hydrogen bonds have been omitted as well as the disorder.



Fig. 3. Packing diagram showing two sheets perpendicular to the *ac* plane. Hydrogen atoms not involved in the O—H…O hydrogen bonds have omitted.

### 2,6-Dimethyl-9-oxabicyclo[3.3.1]nonane-endo-2,endo-6-diol

| Crystal data                     |                                                 |
|----------------------------------|-------------------------------------------------|
| $C_{10}H_{18}O_3$                | $F_{000} = 816$                                 |
| $M_r = 186.24$                   | $D_{\rm x} = 1.252 \ {\rm Mg \ m}^{-3}$         |
| Monoclinic, C2/c                 | Mo $K\alpha$ radiation<br>$\lambda = 0.71069$ Å |
| Hall symbol: -C 2yc              | Cell parameters from 11200 reflections          |
| a = 10.8900 (2) Å                | $\theta = 2.2 - 27.5^{\circ}$                   |
| <i>b</i> = 9.9227 (2) Å          | $\mu = 0.09 \text{ mm}^{-1}$                    |
| c = 18.8981 (3) Å                | T = 170 (2)  K                                  |
| $\beta = 104.658 \ (11)^{\circ}$ | Plate, colourless                               |
| $V = 1975.63 (12) \text{ Å}^3$   | $0.40\times0.23\times0.17~mm$                   |
| Z = 8                            |                                                 |

#### Data collection

| Nonius KappaCCD area-detector<br>diffractometer      | 2220 independent reflections           |
|------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube             | 2113 reflections with $I > 2\sigma(I)$ |
| Monochromator: horizontally mounted graphite crystal | $R_{\rm int} = 0.032$                  |
| Detector resolution: 9 pixels mm <sup>-1</sup>       | $\theta_{\text{max}} = 27.5^{\circ}$   |
| T = 170(2)  K                                        | $\theta_{\min} = 2.2^{\circ}$          |

| $\phi$ and $\omega$ scans   | $h = -14 \rightarrow 14$ |
|-----------------------------|--------------------------|
| Absorption correction: none | $k = -12 \rightarrow 12$ |
| 11200 measured reflections  | $l = -23 \rightarrow 24$ |

#### Refinement

| Refinement on $F^2$                                    | Hydrogen site location: inferred from neighbouring sites                                                    |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | H-atom parameters constrained                                                                               |
| $R[F^2 > 2\sigma(F^2)] = 0.045$                        | $w = 1/[\sigma^2(F_o^2) + (0.0645P)^2 + 1.3903P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                         |
| $wR(F^2) = 0.122$                                      | $(\Delta/\sigma)_{\rm max} = 0.001$                                                                         |
| <i>S</i> = 1.08                                        | $\Delta \rho_{max} = 0.37 \text{ e } \text{\AA}^{-3}$                                                       |
| 2220 reflections                                       | $\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$                                                      |
| 121 parameters                                         | Extinction correction: SHELXL97 (Sheldrick, 1997),<br>$Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| Primary atom site location: structure-invariant direct |                                                                                                             |

methods Extinction coefficient: 0.063 (6)

Secondary atom site location: difference Fourier map

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

*Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters*  $(Å^2)$ 

|     | x             | У            | Ζ           | $U_{\rm iso}$ */ $U_{\rm eq}$ | Occ. (<1) |
|-----|---------------|--------------|-------------|-------------------------------|-----------|
| 01  | 0.14392 (7)   | 0.13828 (8)  | 0.05218 (4) | 0.0205 (2)                    |           |
| O2  | -0.05943 (9)  | 0.06522 (9)  | 0.17721 (5) | 0.0325 (3)                    |           |
| H2  | -0.0068       | 0.0669       | 0.2183      | 0.039*                        | 0.50      |
| H12 | -0.0688       | -0.0156      | 0.1637      | 0.039*                        | 0.50      |
| O3  | 0.39487 (9)   | 0.30199 (9)  | 0.19209 (5) | 0.0329 (3)                    |           |
| Н3  | 0.4123        | 0.3624       | 0.1650      | 0.039*                        | 0.50      |
| H13 | 0.4693        | 0.2797       | 0.2137      | 0.039*                        | 0.50      |
| C1  | 0.08890 (10)  | 0.05681 (11) | 0.09945 (6) | 0.0197 (3)                    |           |
| H1  | 0.0414        | -0.0175      | 0.0685      | 0.024*                        |           |
| C2  | -0.01064 (10) | 0.14124 (11) | 0.12572 (6) | 0.0199 (3)                    |           |
| C3  | 0.04768 (10)  | 0.27108 (11) | 0.16325 (6) | 0.0203 (3)                    |           |

# supplementary materials

| H3A  | 0.1006        | 0.2493        | 0.2127      | 0.024*     |
|------|---------------|---------------|-------------|------------|
| H3B  | -0.0211       | 0.3321        | 0.1689      | 0.024*     |
| C4   | 0.12935 (11)  | 0.34342 (11)  | 0.12003 (6) | 0.0209 (3) |
| H4A  | 0.0730        | 0.3907        | 0.0780      | 0.025*     |
| H4B  | 0.1818        | 0.4123        | 0.1518      | 0.025*     |
| C5   | 0.21646 (10)  | 0.24856 (11)  | 0.09164 (6) | 0.0183 (3) |
| Н5   | 0.2496        | 0.3010        | 0.0552      | 0.022*     |
| C6   | 0.33340 (10)  | 0.19199 (11)  | 0.14790 (6) | 0.0194 (3) |
| C7   | 0.29534 (11)  | 0.08904 (12)  | 0.19901 (6) | 0.0214 (3) |
| H7A  | 0.3715        | 0.0380        | 0.2250      | 0.026*     |
| H7B  | 0.2623        | 0.1375        | 0.2361      | 0.026*     |
| C8   | 0.19427 (11)  | -0.01001 (11) | 0.15796 (6) | 0.0226 (3) |
| H8A  | 0.2358        | -0.0796       | 0.1345      | 0.027*     |
| H8B  | 0.1559        | -0.0559       | 0.1937      | 0.027*     |
| C9   | -0.12245 (11) | 0.17108 (14)  | 0.06051 (7) | 0.0296 (3) |
| H9A  | -0.1577       | 0.0862        | 0.0376      | 0.044*     |
| H9B  | -0.0934       | 0.2260        | 0.0248      | 0.044*     |
| H9C  | -0.1880       | 0.2202        | 0.0772      | 0.044*     |
| C10  | 0.42431 (11)  | 0.13079 (13)  | 0.10697 (7) | 0.0278 (3) |
| H10A | 0.4471        | 0.1992        | 0.0751      | 0.042*     |
| H10B | 0.3830        | 0.0546        | 0.0773      | 0.042*     |
| H10C | 0.5012        | 0.0993        | 0.1423      | 0.042*     |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|-----|------------|------------|------------|-------------|------------|-------------|
| O1  | 0.0249 (4) | 0.0206 (4) | 0.0156 (4) | -0.0001 (3) | 0.0046 (3) | -0.0026 (3) |
| O2  | 0.0337 (5) | 0.0271 (5) | 0.0423 (5) | 0.0021 (4)  | 0.0200 (4) | 0.0106 (4)  |
| O3  | 0.0296 (5) | 0.0241 (5) | 0.0412 (5) | -0.0056 (3) | 0.0023 (4) | -0.0107 (4) |
| C1  | 0.0224 (5) | 0.0162 (5) | 0.0197 (5) | -0.0001 (4) | 0.0037 (4) | -0.0020 (4) |
| C2  | 0.0212 (5) | 0.0185 (5) | 0.0201 (5) | 0.0011 (4)  | 0.0052 (4) | 0.0016 (4)  |
| C3  | 0.0245 (5) | 0.0170 (5) | 0.0208 (5) | 0.0025 (4)  | 0.0082 (4) | -0.0009 (4) |
| C4  | 0.0248 (6) | 0.0147 (5) | 0.0241 (5) | 0.0034 (4)  | 0.0079 (4) | 0.0014 (4)  |
| C5  | 0.0221 (5) | 0.0157 (5) | 0.0174 (5) | 0.0012 (4)  | 0.0057 (4) | 0.0012 (4)  |
| C6  | 0.0212 (5) | 0.0156 (5) | 0.0202 (5) | 0.0002 (4)  | 0.0031 (4) | -0.0009 (4) |
| C7  | 0.0233 (5) | 0.0200 (5) | 0.0193 (5) | 0.0026 (4)  | 0.0024 (4) | 0.0036 (4)  |
| C8  | 0.0240 (6) | 0.0157 (5) | 0.0273 (6) | 0.0025 (4)  | 0.0051 (4) | 0.0028 (4)  |
| C9  | 0.0232 (6) | 0.0329 (7) | 0.0292 (6) | 0.0049 (5)  | 0.0000 (5) | -0.0002 (5) |
| C10 | 0.0246 (6) | 0.0287 (6) | 0.0316 (6) | 0.0063 (5)  | 0.0100 (5) | 0.0023 (5)  |

# Geometric parameters (Å, °)

| O1—C5  | 1.4420 (13) | C4—H4A | 0.9900      |
|--------|-------------|--------|-------------|
| 01—C1  | 1.4427 (13) | C4—H4B | 0.9900      |
| O2—C2  | 1.4352 (13) | C5—C6  | 1.5433 (14) |
| O2—H2  | 0.8400      | С5—Н5  | 1.0000      |
| O2—H12 | 0.8400      | C6—C10 | 1.5280 (16) |
| O3—C6  | 1.4331 (13) | C6—C7  | 1.5332 (15) |
| O3—H3  | 0.8400      | С7—С8  | 1.5320 (16) |

| O3—H13      | 0.8400      | С7—Н7А        | 0.9900      |
|-------------|-------------|---------------|-------------|
| C1—C8       | 1.5287 (15) | С7—Н7В        | 0.9900      |
| C1—C2       | 1.5478 (15) | C8—H8A        | 0.9900      |
| C1—H1       | 1.0000      | C8—H8B        | 0.9900      |
| С2—С9       | 1.5263 (16) | С9—Н9А        | 0.9800      |
| C2—C3       | 1.5292 (15) | С9—Н9В        | 0.9800      |
| C3—C4       | 1.5300 (15) | С9—Н9С        | 0.9800      |
| С3—НЗА      | 0.9900      | C10—H10A      | 0.9800      |
| С3—Н3В      | 0.9900      | C10—H10B      | 0.9800      |
| C4—C5       | 1.5269 (14) | C10—H10C      | 0.9800      |
| C5—O1—C1    | 111.34 (8)  | С4—С5—Н5      | 106.6       |
| С2—О2—Н2    | 109.5       | С6—С5—Н5      | 106.6       |
| C2—O2—H12   | 109.5       | O3—C6—C10     | 109.31 (9)  |
| С6—О3—Н3    | 109.5       | O3—C6—C7      | 107.54 (9)  |
| C6—O3—H13   | 109.5       | C10—C6—C7     | 111.54 (9)  |
| O1—C1—C8    | 109.73 (9)  | O3—C6—C5      | 107.86 (9)  |
| O1—C1—C2    | 109.25 (8)  | C10—C6—C5     | 108.85 (9)  |
| C8—C1—C2    | 117.46 (9)  | C7—C6—C5      | 111.64 (9)  |
| 01—C1—H1    | 106.6       | C8—C7—C6      | 112.49 (9)  |
| C8—C1—H1    | 106.6       | С8—С7—Н7А     | 109.1       |
| C2—C1—H1    | 106.6       | С6—С7—Н7А     | 109.1       |
| O2—C2—C9    | 107.03 (9)  | С8—С7—Н7В     | 109.1       |
| O2—C2—C3    | 108.05 (9)  | С6—С7—Н7В     | 109.1       |
| C9—C2—C3    | 111.34 (9)  | H7A—C7—H7B    | 107.8       |
| O2—C2—C1    | 110.03 (9)  | C1—C8—C7      | 113.55 (9)  |
| C9—C2—C1    | 109.05 (9)  | C1—C8—H8A     | 108.9       |
| C3—C2—C1    | 111.25 (9)  | С7—С8—Н8А     | 108.9       |
| C2—C3—C4    | 112.14 (9)  | C1—C8—H8B     | 108.9       |
| С2—С3—НЗА   | 109.2       | С7—С8—Н8В     | 108.9       |
| С4—С3—НЗА   | 109.2       | H8A—C8—H8B    | 107.7       |
| С2—С3—Н3В   | 109.2       | С2—С9—Н9А     | 109.5       |
| С4—С3—Н3В   | 109.2       | С2—С9—Н9В     | 109.5       |
| НЗА—СЗ—НЗВ  | 107.9       | Н9А—С9—Н9В    | 109.5       |
| C5—C4—C3    | 113.28 (9)  | С2—С9—Н9С     | 109.5       |
| C5—C4—H4A   | 108.9       | Н9А—С9—Н9С    | 109.5       |
| C3—C4—H4A   | 108.9       | Н9В—С9—Н9С    | 109.5       |
| C5—C4—H4B   | 108.9       | C6—C10—H10A   | 109.5       |
| C3—C4—H4B   | 108.9       | C6—C10—H10B   | 109.5       |
| H4A—C4—H4B  | 107.7       | H10A—C10—H10B | 109.5       |
| O1—C5—C4    | 109.98 (8)  | С6—С10—Н10С   | 109.5       |
| O1—C5—C6    | 109.20 (8)  | H10A—C10—H10C | 109.5       |
| C4—C5—C6    | 117.37 (9)  | H10B—C10—H10C | 109.5       |
| O1—C5—H5    | 106.6       |               |             |
| C5—O1—C1—C8 | -64.28 (10) | O1—C5—C6—O3   | -173.1 (1)  |
| C5—O1—C1—C2 | 65.83 (11)  | C4—C5—C6—O3   | -47.12 (12) |
| O1—C1—C2—O2 | -175.6(1)   | O1—C5—C6—C10  | 68.4 (1)    |
| C8—C1—C2—O2 | -49.86 (13) | C4—C5—C6—C10  | -165.62 (9) |
| O1—C1—C2—C9 | 67.3 (1)    | O1—C5—C6—C7   | -55.19 (11) |

# supplementary materials

| C8—C1—C2—C9 | -166.96 (10) | C4—C5—C6—C7  | 70.81 (12)  |
|-------------|--------------|--------------|-------------|
| O1—C1—C2—C3 | -55.91 (11)  | O3—C6—C7—C8  | 162.07 (9)  |
| C8—C1—C2—C3 | 69.86 (12)   | C10—C6—C7—C8 | -78.10 (12) |
| O2—C2—C3—C4 | 166.59 (9)   | C5—C6—C7—C8  | 43.94 (12)  |
| C9—C2—C3—C4 | -76.15 (12)  | O1—C1—C8—C7  | 51.38 (12)  |
| C1—C2—C3—C4 | 45.70 (12)   | C2—C1—C8—C7  | -74.14 (12) |
| C2—C3—C4—C5 | -44.26 (12)  | C6—C7—C8—C1  | -42.51 (13) |
| C1—O1—C5—C4 | -63.63 (10)  | С1—С2—О2—Н2  | 79          |
| C1—O1—C5—C6 | 66.52 (10)   | C1-C2-O2-H12 | -39         |
| C3—C4—C5—O1 | 52.01 (11)   | С5—С6—О3—Н3  | -56         |
| C3—C4—C5—C6 | -73.60 (12)  | C5—C6—O3—H13 | -162        |
|             |              |              |             |

Hydrogen-bond geometry (Å, °)

| D—H···A                   | <i>D</i> —Н | H···A | $D \cdots A$ | D—H··· $A$ |
|---------------------------|-------------|-------|--------------|------------|
| O2—H2···O2 <sup>i</sup>   | 0.84        | 1.92  | 2.728 (2)    | 160        |
| O2—H12···O3 <sup>ii</sup> | 0.84        | 1.96  | 2.687 (1)    | 145        |
| O3—H3···O2 <sup>iii</sup> | 0.84        | 2.04  | 2.687 (1)    | 133        |
| O3—H13···O3 <sup>iv</sup> | 0.84        | 2.02  | 2.738 (2)    | 143        |

Symmetry codes: (i) -x, y, -z+1/2; (ii) x-1/2, y-1/2, z; (iii) x+1/2, y+1/2, z; (iv) -x+1, y, -z+1/2.







